Stochastic and delayed stochastic models of gene expression and regulation.
نویسنده
چکیده
Gene expression and gene regulatory networks dynamics are stochastic. The noise in the temporal amounts of proteins and RNA molecules in cells arises from the stochasticity of transcription initiation and elongation (e.g., due to RNA polymerase pausing), translation, and post-transcriptional regulation mechanisms, such as reversible phosphorylation and splicing. This is further enhanced by the fact that most RNA molecules and proteins exist in cells in very small amounts. Recently, the time needed for transcription and translation to be completed once initiated were shown to affect the stochasticity in gene networks. This observation stressed the need of either introducing explicit delays in models of transcription and translation or to model processes such as elongation at the single nucleotide level. Here we review stochastic and delayed stochastic models of gene expression and gene regulatory networks. We first present stochastic non-delayed and delayed models of transcription, followed by models at the single nucleotide level. Next, we present models of gene regulatory networks, describe the dynamics of specific stochastic gene networks and available simulators to implement these models.
منابع مشابه
H∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks
Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...
متن کاملBehavioral study of piston manufacturing plant through stochastic models
Piston plays a vital role in almost all types of vehicles. The present study discusses the behavioral study of a piston manufacturing plant. Manufacturing plants are complex repairable systems and therefore, it is difficult to evaluate the performance of a piston manufacturing plant using stochastic models. The stochastic model is an efficient performance evaluator for repairable systems. In...
متن کاملLiu Estimates and Influence Analysis in Regression Models with Stochastic Linear Restrictions and AR (1) Errors
In the linear regression models with AR (1) error structure when collinearity exists, stochastic linear restrictions or modifications of biased estimators (including Liu estimators) can be used to reduce the estimated variance of the regression coefficients estimates. In this paper, the combination of the biased Liu estimator and stochastic linear restrictions estimator is considered to overcom...
متن کاملOn Calibration and Application of Logit-Based Stochastic Traffic Assignment Models
There is a growing recognition that discrete choice models are capable of providing a more realistic picture of route choice behavior. In particular, influential factors other than travel time that are found to affect the choice of route trigger the application of random utility models in the route choice literature. This paper focuses on path-based, logit-type stochastic route choice models, i...
متن کاملApplication of Stochastic Optimal Control, Game Theory and Information Fusion for Cyber Defense Modelling
The present paper addresses an effective cyber defense model by applying information fusion based game theoretical approaches. In the present paper, we are trying to improve previous models by applying stochastic optimal control and robust optimization techniques. Jump processes are applied to model different and complex situations in cyber games. Applying jump processes we propose some m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mathematical biosciences
دوره 223 1 شماره
صفحات -
تاریخ انتشار 2010